Translations

Coordinate notation: $(a, b) \rightarrow (a + h, b + k)$

Translation notation: $T_{\langle h,k\rangle}(A)$

slide point *A h* units in the *x*-direction slide point A k units in the y-direction

 $\langle h, k \rangle$ is the translation vector

Copy ABCD from the drawing above and draw its image after each translation.

1.
$$(a, b) \rightarrow (a - 1, b + 2)$$

2.
$$(a, b) \rightarrow (a + 3, b)$$

3.
$$T_{(0,-5)}(ABCD)$$

Describe each translation using a) coordinate notation and b) translation notation.

4. Every point moves to the left 2 units and up 6 units.

5. Every point moves to the right 7 units and up 3 units.

6. Every point moves to the left 8 units.

7. Every point moves up 9 units.

8. Every point moves to the left 10 units and down 4 units.

The image of each polygon after a translation is shown in bold lines. Describe each translation in a) coordinate notation and b) translation notation.

- 11. Is congruency preserved when translating a polygon?
- 12. Is orientation preserved when translating a polygon?

Find the distance between a point and its image after the given translation.

13.
$$(a, b) \rightarrow (a - 1, b + 2)$$

14.
$$T_{\langle 3,4 \rangle}$$

15.
$$T_{\langle 7,-5 \rangle}$$

Describe the translation

16.
$$(4,8) \rightarrow (7,2)$$

17.
$$(5,0) \rightarrow (8,5)$$

18.
$$(-8,10) \rightarrow (1,0)$$

Reflections

Draw the polygon by graphing the given vertices and connecting with segments. Reflect the polygon appropriately and give the coordinates of the image.

Example 1 A (-2, -3), B(1, 3) and C(2, -1) reflected over the x-axis (r_{x-axis})

A
$$(-2, -3) \rightarrow A'(-2, 3)$$

B $(1, 3) \rightarrow B'(1, -3)$
C $(2, -1) \rightarrow C'(2, 1)$

Describe the change in orientation:

5. M(2, -3), N(1, 2), and O(-4, -2) reflected over the line
$$y = x(r_y = x)$$

$$\begin{array}{l} G(0,2) \rightarrow G' \ (\\ H(-1,-2) \rightarrow H' (\\ I(-3,4) \rightarrow I' (\end{array}$$

$$M(2, -3) \rightarrow M'$$
 (
 $N(1, 2) \rightarrow N'$ (
 $O(-4, -2) \rightarrow O'$ (

2. D(-1, 3), E(5, 2), and F(3, -4) reflected over the x-axis(
$$\mathbf{r}_{x-axis}$$
)

6. P(2, 3), Q(-3, 4), and R(5, 0) reflected over the line
$$y = x(r_y = x)$$

$$D(-1, 3) \rightarrow D'$$
 (
 $E(5, 2) \rightarrow E'$ (
 $F(3, -4) \rightarrow F'$ (

 $A(2, 3) \rightarrow A'$

 $B(0, 0) \rightarrow B'($

 $C(4, 0) \rightarrow C'($

$$J(-3, 0) \rightarrow J'(K(2, 1) \rightarrow K'($$

$$L(1, -2) \rightarrow L'($$

$$P(2, 3) \rightarrow P'(Q(-3, 4) \rightarrow Q'(R(5, 0) \rightarrow R'($$

The rules

Reflecting over the x-axis (rx-axis)

 $(a, b) \rightarrow$

Reflecting over the y-axis (ry-axis)

 $(a, b) \rightarrow$

Reflecting over the line $y = x (r_{y=x})$

 $(a, b) \rightarrow$

7. Give the coordinates of the vertices of pentagon PQRST after a reflection over the x-axis, y-axis, and the line y = x

9.

Image points after reflecting over the x-axis:

Image points after reflecting over the y-axis:

Image points after reflecting over the line y = x:

Applying Rotations

The rules

90° rotation (R _{90°})	$(a, b) \rightarrow$
180° rotation (R _{180°})	$(a, b) \rightarrow$
270° rotation (R _{270°})	$(a, b) \rightarrow$
360° rotation (R _{360°})	$(a, b) \rightarrow$

- 2. Name the image of each triangle after the rotation around the origin.
- a) $\mathbf{R}_{90^{\circ}}(\Delta ABC)$
- b) $R_{180^{\circ}}(\Delta DEF)$
- c) $\mathbf{R}_{270^{\circ}}(\Delta JKL)$
- d) $R_{180^{\circ}}(\Delta GHI)$

Quadrilateral BCED is shown on polar graph paper. Draw its image after a rotation of 90° ($R_{90^{\circ}}$) and give the coordinates in polar form (the rays are in 10° increments).

3.

E (D (

- 4. Is congruency preserved when rotating a polygon?
- 5. Is orientation preserved when rotating a polygon?

Example

D (1,3), E (3,2), F (2,0) rotated 90°

$$D(1,3) \rightarrow D'(-3, 1)$$

 $E(3,2) \rightarrow E'(-2, 3)$

$$F(2,0) \rightarrow F'(0,2)$$

Note a rotation is counterclockwise (ccw) unless otherwise noted clockwise (cw)

90° rotations (R_{90} °)

$$A(2, 3) \rightarrow A'$$
 (
 $B(0, 0) \rightarrow B'$ (
 $C(4, 0) \rightarrow C'$ (

$$\begin{array}{l} D(\text{-}1,\,3) \rightarrow D' \ (\\ E(5,\,2) \rightarrow E' (\\ F(3,\,\text{-}4) \rightarrow F' (\end{array}$$

180° rotations ($R_{180°}$)

$$\begin{array}{l} G(0,2) \rightarrow G' \ (\\ H(\text{-}1,\text{-}2) \rightarrow H' \ (\\ I(\text{-}3,4) \rightarrow I' \ (\\ \end{array}$$

$$J(-3, 0) \rightarrow J' ($$

$$K(2, 1) \rightarrow K' ($$

$$L(1, -2) \rightarrow L' ($$

270° rotations (R_{270°})

$$\begin{array}{l} M(2,-3) \longrightarrow M' \ (\\ N(1,2) \longrightarrow N' (\\ O(-4,-2) \longrightarrow O' (\end{array}$$

$$P(2, 3) \rightarrow P'(0)$$

 $Q(-3, 4) \rightarrow Q'(0)$
 $R(5, 0) \rightarrow R'(0)$

12. a) Sketch the image of \overline{AB} after a 180° rotation around the origin.

b) Use slopes to show that quadrilateral ABA'B' is a parallelogram.