Name:	Date:	Class:

Polygons Test Review

(#'s 1-3) Classify a) classify them by the number of sides. b) Classify as concave or convex <u>AND</u> c) Classify as equilateral, equiangular, regular, or none of these.

	1.	2.	3.
	$\langle + \rangle$		
Name the polygon	a.	a.	a.
convex or concave?	b.	b.	b.
equilateral, equiangular, regular, or none of these?	С.	С.	с.

4. Find the sum of the interior angle measures of a convex 14-gon.

5. The surface area of a trampoline is in the shape of a regular octagon. What is the measure of each interior angle of the trampoline?

6. A flower garden is surrounded by paths as shown. Find the measure of each exterior angle of the flower garden.

7. Find the measure of each exterior angle of a regular hexagon.

- 8. In parallelogram *ABCD*, CD = 20, BE = 9, and $m \angle DAB = 50^{\circ}$. Find each measure.
 - a) BD
 - b) *AB*
 - **c)** *DE*
 - d) *m∠ABC*
 - e) m∠BCD
 - f) $m \angle CDA$
- 9. *PQRS* is a parallelogram. Find each measure.
 - a) PS
 - b) *QR*
 - c) *m∠P*
 - d) *m∠S*
- 10. Show that *ABCD* is a parallelogram for x = 3 and y = 9.

С

7y + 3 $(3x + 22)^{\circ}$ 4y + 15

11. A slab of concrete is poured with diagonal spacers. In rectangle CNRT, CN = 30 ft, and NT = 52 ft. Find each length.

12. PQRS is a rhombus. Find each measure.

13. Determine if each quadrilateral must be a parallelogram, if yes classify which one.

Q

Т

P

14. In rectangle QRST, RT = 55, and QR = 45. Find each length.

- **a)** *PR*
- **b)** *RS*
- **c)** *QS*
- **d)** *QP*
- 15. *WXYZ* is a rhombus. Find *YZ*.

16. Find $m \angle WXZ$ and $m \angle XYZ$ if $m \angle YVZ = (7b + 27)^{\circ}$ and $m \angle WYZ = (3b + 7)^{\circ}$.

х

5a+6

Υ

R

S

(Use figure for #15 & #16)

17. In the kite *MNPQ*, $m \angle NQP = 70^{\circ}$ and the $m \angle NMQ = 60^{\circ}$. Find each measure.

- a) *m∠NMR*
- **b)** *m∠MQR*
- **c)** $m \angle NPR$
- **d)** *m∠MQP*

18. Find *MN*.

19. Find the value of each variable.

- *x* = _____
- *y* = _____
- *z* = _____

20. In ΔGHJ , GH = 12. Find the perimeter of ΔGHJ and ΔKLM .

21. Given: *ABCD* and *WXYZ* are congruent rhombi. *M* is the midpoint of \overline{BC} and \overline{WX} and *N* is the midpoint of \overline{DC} and \overline{WZ} . A D D X Y

Prove: WMCN is a rhombus.

Statements	Reasons
1. <i>ABCD</i> and <i>WXYZ</i> are congruent rhombi. <i>M</i> is the midpoint of \overline{BC} and \overline{WX} and <i>N</i> is the midpoint of \overline{DC} and \overline{WZ} .	1.
2. BC = DC = WX = WZ	2.
3. $BM + MC = BC$ WM + MX = WX DN + NC = DC WN + NZ = WZ	3.
4. BM + MC = DN + NC = WM + MX = WN + NZ	4.
5. $BM = MC, WM = MX$ DN = NC, WN = NZ	5.
6. MC + MC = NC + NC = WM + WM = WN + WN	6.
7. $2(MC) = 2(NC) = 2(WM) = 2(WN)$	7.
8. $MC = NC = WM = WN$	8.
9. WMCN is a rhombus	9.