\qquad
\qquad
\qquad

Polygons Test Review

(\#'s 1-3) Classify a) classify them by the number of sides. b) Classify as concave or convex AND c) Classify as equilateral, equiangular, regular, or none of these.

4. Find the sum of the interior angle measures of a convex 14-gon.
5. The surface area of a trampoline is in the shape of a regular octagon. What is the measure of each interior angle of the trampoline?
6. A flower garden is surrounded by paths as shown. Find the measure of each exterior angle of the flower garden.

7. Find the measure of each exterior angle of a regular hexagon.
8. In parallelogram $A B C D, C D=20, B E=9$, and $m \angle D A B=50^{\circ}$. Find each measure.
a) $B D$
b) $A B$
c) $D E$
d) $m \angle A B C$
e) $m \angle B C D$
f) $m \angle C D A$
9. $P Q R S$ is a parallelogram. Find each measure.
a) $P S$
b) $Q R$
c) $m \angle P$

d) $m \angle S$
10. Show that $A B C D$ is a parallelogram for $x=3$ and $y=9$.

11. A slab of concrete is poured with diagonal spacers. In rectangle $C N R T, C N=30 f t$, and $N T=52 f t$. Find each length.

12. $P Q R S$ is a rhombus. Find each measure.

$P S=$ \qquad

$$
m \angle Q P R=
$$

\qquad
13. Determine if each quadrilateral must be a parallelogram, if yes classify which one.

\qquad
14. In rectangle $Q R S T, R T=55$, and $Q R=45$. Find each length.
a) $P R$
b) $R S$
c) $Q S$
d) $Q P$

15. $W X Y Z$ is a rhombus. Find $Y Z$.
16. Find $m \angle W X Z$ and $m \angle X Y Z$ if $m \angle Y V Z=(7 b+27)^{\circ}$ and $m \angle W Y Z=(3 b+7)^{\circ}$.

(Use figure for \#15 \& \#16)
17. In the kite $M N P Q, m \angle N Q P=70^{\circ}$ and the $m \angle N M Q=60^{\circ}$. Find each measure.
a) $m \angle N M R$
b) $m \angle M Q R$
c) $m \angle N P R$
d) $m \angle M Q P$

18. Find $M N$.

19. Find the value of each variable.
$x=$ \qquad
$y=$ \qquad
$z=$ \qquad

20. In $\Delta G H J, G H=12$. Find the perimeter of $\triangle G H J$ and $\triangle K L M$.

21. Given: $A B C D$ and $W X Y Z$ are congruent rhombi. M is the midpoint of $\overline{B C}$ and $\overline{W X}$ and N is the midpoint of $\overline{D C}$ and $\overline{W Z}$.
Prove: $W M C N$ is a rhombus.

Statements	Reasons
1. $A B C D$ and $W X Y Z$ are congruent rhombi. M is the midpoint of $\overline{B C}$ and $\overline{W X}$ and N is the midpoint of $\overline{D C}$ and $\overline{W Z}$.	1.
2. $B C=D C=W X=W Z$	2.
3. $\begin{aligned} & B M+M C=B C \\ & W M+M X=W X \\ & D N+N C=D C \\ & W N+N Z=W Z \end{aligned}$	3.
4. $B M+M C=D N+N C=W M+M X=W N+N Z$	4.
$\text { 5. } \begin{aligned} B M & =M C, W M=M X \\ D N & =N C, W N=N Z \end{aligned}$	5.
6. $M C+M C=N C+N C=W M+W M=W N+W N$	6.
7. $2(M C)=2(N C)=2(W M)=2(W N)$	7.
8. $M C=N C=W M=W N$	8.
9. $W M C N$ is a rhombus	9.

