Foundations	of Geometry	Review
-------------	-------------	--------

Name: ______ Pd: _____

1. Define the following te	erms:	
Undefined terms		
Coplanar		
Collinear		
Postulate		
Bisect		
2. Sketch the following		
A line in plane R	A line intersecting a plane at point D	\overrightarrow{AB} intersecting \overrightarrow{CD}
Use correct notation to na	ame the following.	
3.	4. S	B
3	4	
5. What is the intersection	n of 2 lines?	
6. What is the intersection	n of 2 planes?	
7. What is the intersection	n of 3 planes?	
8. What is the intersection	n of a line and a plane?	
9. How many points defin	e a line?	
10. How many points defi	ne a plane? What kind of points are they	y?

Conditional statements	
Biconditional statements	
Inductive Reasoning	
Deductive Reasoning	
Counterexample	
Postulate	
Theorem	
Reflexive Property	
Symmetric Property	
Transitive Property	
Distributive Property	
Supplementary angles	
Complementary angles	

Complete the following patterns:

11) 3, 6, 12, 24, _____, ____

12) a, d, g, j, _____, ____

13) Write a biconditional statement from the following definition: Two angles whose sum is 90° are complementary angles

14) Write the inverse, Converse, & Contrapositive for the following statement and then decide if it is true of false. If false, give a counterexample.

Cor	nditional	<i>If I am 16 years old, then I have my driver's license.</i>		Counterexample
Inv	erse		T or F	
Cor	iverse		T or F	
Cor	ntrapositi	ve	T or F	
15) Determine if the following conjecture is valid.				15)
	Given:	Nicholas can watch 30 minutes of television if he cl cleans his room.	eans his r	oom first. Nicholas
	Conjec	ture: Nicholas watches 30 minutes of television.		
16)	Determiı	ne if the following conjecture is valid.		16)
Given: If a point A is on \overline{MN} , then $\overline{MA} + \overline{AN} = \overline{MN}$.				
Conjecture: If a point A is on \overline{MN} , then <i>it</i> is the midpoint of \overline{MN} .				
17)	Underlin	e the conclusion, and circle the hypothesis:		
I will pass my geometry test, if I do all my homework.				

18) Underline the conclusion, and circle the hypothesis:

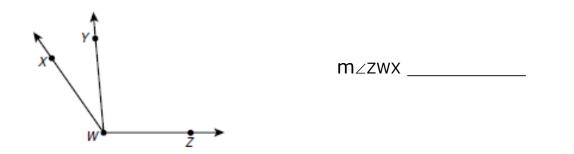
If I drive a Mustang, then I drive a Ford.

19-20) State if these are valid biconditional statements.

 It is a triangle if and only if it is a closed shape that has three sides.

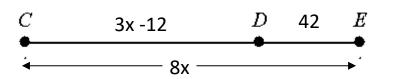
 I have a rectangle if and only if it is a closed shape with four sides.

 State the property being demonstrated in the following statements.

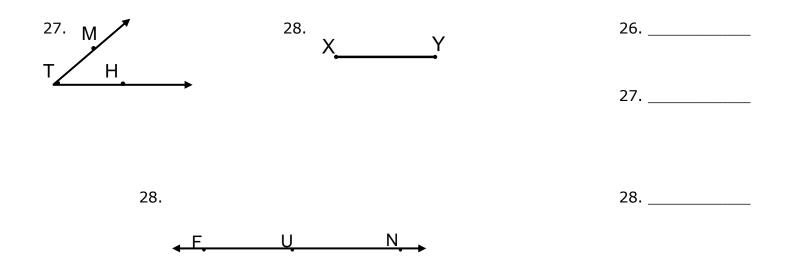

 21) $m \angle 1 = m \angle 2$, so $m \angle 1 + m \angle 3 = m \angle 2 + m \angle 3$

 22) $\overline{MN} \cong \overline{PQ}$, so $\overline{PQ} \cong \overline{MN}$

 23) AB = CD and CD = EF, so AB = EF


24) m∠A = m∠A

25) Marc doesn't think that the angle of the front seat in his mom's car is very cool, so he tilts the seat back. $m\angle ZWY = 95^{\circ}$ and $m\angle YWX = 30^{\circ}$. Find the measure of $\angle ZWX$.


26) Given:

Prove x = 6

Statements	Reasons
1 CD = 3x-12; DE = 42, CE = 8x	1 Given
2 CE = CD + DE	2 Segment Addition Post.
3 $8x = 3x - 12 + 42$	3
4	4
5	5
6	6
7	7
8	8

Use correct notation to name the following.

