Practice A Midpoint and Distance in the Coordinate Plane

Complete the statements.

1. A coordinate plane is a plane that is divided into four regions by a horizontal

number line, the _____, and a vertical number line, the _____

2. The location, or _____, of a point are given by an ordered pair (*x*, *y*).

Use the figure for Exercises 3–5.

The midpoint of a segment has an *x*-coordinate that is the average of the *x*-coordinates of its endpoints $\left(\frac{x_1 + x_2}{2}\right)$. The midpoint of a segment has a *y*-coordinate that is the average of the *y*-coordinates of its endpoints $\left(\frac{y_1 + y_2}{2}\right)$.

- **3.** *Q* has coordinates (0, 0). *R* has coordinates (3, 0). Find the midpoint of \overline{QR} .
- **4.** *S* has coordinates (0, -2). Find the midpoint of \overline{QS} .
- **5.** T has coordinates (3, -2). Find the midpoint of \overline{QT} .

Use the figure for Exercises 6 and 7.

6. *I* is the midpoint of \overline{HJ} . *H* has coordinates (0, 0), and *I* has coordinates (-1, 2). Sketch these points in the coordinate plane. Study the graph and guess where *J* will be. Draw \overline{HJ} .

7. Find the coordinates of J by using the Midpoint Formula.

Use the figure for Exercises 8–12.

Manuel is out for a jog. The thick lines on the grid are jogging paths. He is on his way home and is at D. His home is at E. Each unit on the grid is 1 mile.

- 8. Name the coordinates of *D*.
- **9.** Find how many miles Manuel will jog if he goes straight to the *x*-axis.
- **10.** Find how many miles Manuel will jog if he stays on the jogging paths all the way home.

43

11. Find how many miles Manuel will jog if he goes straight to the *y*-axis.

LESSON Practice B

Midpoint and Distance in the Coordinate Plane

Find the coordinates of the midpoint of each segment.

- **1.** \overline{TU} with endpoints T(5, -1) and U(1, -5)
- **2.** \overline{VW} with endpoints V(-2, -6) and W(x + 2, y + 3)
- **3.** Y is the midpoint of \overline{XZ} . X has coordinates (2, 4), and Y has coordinates (-1, 1). Find the coordinates of Z.

Use the figure for Exercises 4–7.

- **4.** Find *AB*.
- 5. Find *BC*. _____
- 6. Find *CA*.
- 7. Name a pair of congruent segments.

Find the distances.

- 8. Use the Distance Formula to find the distance, to the nearest tenth, between K(-7, -4) and L(-2, 0).
- 9. Use the Pythagorean Theorem to find the distance, to the nearest tenth, between F(9, 5) and G(-2, 2).

Use the figure for Exercises 10 and 11.

Snooker is a kind of pool or billiards played on a 6-foot-by-12-foot table. The side pockets are halfway down the rails (long sides).

- **10.** Find the distance, to the nearest tenth of a foot, diagonally across the table from corner pocket to corner pocket.
- **11.** Find the distance, to the nearest tenth of an inch, diagonally across the table from corner pocket to side pocket.

Name _____ Date _____ Class _____